A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method

نویسندگان

  • Ohannes A. Karakashian
  • Charalambos Makridakis
چکیده

The convergence of the discontinuous Galerkin method for the nonlinear (cubic) Schrödinger equation is analyzed in this paper. We show the existence of the resulting approximations and prove optimal order error estimates in L∞(L2). These estimates are valid under weak restrictions on the space-time mesh.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

A Space-time Finite Element Method for the Nonlinear Schrödinger Equation: the Discontinuous Galerkin Method

The convergence of the discontinuous Galerkin method for the nonlinear (cubic) Schrödinger equation is analyzed in this paper. We show the existence of the resulting approximations and prove optimal order error estimates in L∞(L2). These estimates are valid under weak restrictions on the space-time mesh.

متن کامل

A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation

The fractional Fokker-Planck equation is often used to characterize anomalous diffusion. In this paper, a fully discrete approximation for the nonlinear spatial fractional Fokker-Planck equation is given, where the discontinuous Galerkin finite element approach is utilized in time domain and the Galerkin finite element approach is utilized in spatial domain. The priori error estimate is derived...

متن کامل

Analysis of Mixed Interior Penalty Discontinuous Galerkin Methods for the Cahn-Hilliard Equation and the Hele-Shaw Flow

This paper proposes and analyzes two fully discrete mixed interior penalty discontinuous Galerkin (DG) methods for the fourth order nonlinear Cahn-Hilliard equation. Both methods use the backward Euler method for time discretization and interior penalty discontinuous Galerkin methods for spatial discretization. They differ from each other on how the nonlinear term is treated, one of them is bas...

متن کامل

Space-Time Discontinuous Galerkin Method for Large Amplitude Nonlinear Water Waves

A space-time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an inviscid and incompressible fluid is presented. The space-time DG method results in a conservative numerical discretization on time dependent deforming meshes which follow the free surface evolution. The dispersion and dissipation errors of the scheme are investigated and the algorithm is demonstrated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1998